122 research outputs found

    Improved GelSight Tactile Sensor for Measuring Geometry and Slip

    Full text link
    A GelSight sensor uses an elastomeric slab covered with a reflective membrane to measure tactile signals. It measures the 3D geometry and contact force information with high spacial resolution, and successfully helped many challenging robot tasks. A previous sensor, based on a semi-specular membrane, produces high resolution but with limited geometry accuracy. In this paper, we describe a new design of GelSight for robot gripper, using a Lambertian membrane and new illumination system, which gives greatly improved geometric accuracy while retaining the compact size. We demonstrate its use in measuring surface normals and reconstructing height maps using photometric stereo. We also use it for the task of slip detection, using a combination of information about relative motions on the membrane surface and the shear distortions. Using a robotic arm and a set of 37 everyday objects with varied properties, we find that the sensor can detect translational and rotational slip in general cases, and can be used to improve the stability of the grasp.Comment: IEEE/RSJ International Conference on Intelligent Robots and System

    Active Clothing Material Perception using Tactile Sensing and Deep Learning

    Full text link
    Humans represent and discriminate the objects in the same category using their properties, and an intelligent robot should be able to do the same. In this paper, we build a robot system that can autonomously perceive the object properties through touch. We work on the common object category of clothing. The robot moves under the guidance of an external Kinect sensor, and squeezes the clothes with a GelSight tactile sensor, then it recognizes the 11 properties of the clothing according to the tactile data. Those properties include the physical properties, like thickness, fuzziness, softness and durability, and semantic properties, like wearing season and preferred washing methods. We collect a dataset of 153 varied pieces of clothes, and conduct 6616 robot exploring iterations on them. To extract the useful information from the high-dimensional sensory output, we applied Convolutional Neural Networks (CNN) on the tactile data for recognizing the clothing properties, and on the Kinect depth images for selecting exploration locations. Experiments show that using the trained neural networks, the robot can autonomously explore the unknown clothes and learn their properties. This work proposes a new framework for active tactile perception system with vision-touch system, and has potential to enable robots to help humans with varied clothing related housework.Comment: ICRA 2018 accepte

    Connecting Look and Feel: Associating the visual and tactile properties of physical materials

    Full text link
    For machines to interact with the physical world, they must understand the physical properties of objects and materials they encounter. We use fabrics as an example of a deformable material with a rich set of mechanical properties. A thin flexible fabric, when draped, tends to look different from a heavy stiff fabric. It also feels different when touched. Using a collection of 118 fabric sample, we captured color and depth images of draped fabrics along with tactile data from a high resolution touch sensor. We then sought to associate the information from vision and touch by jointly training CNNs across the three modalities. Through the CNN, each input, regardless of the modality, generates an embedding vector that records the fabric's physical property. By comparing the embeddings, our system is able to look at a fabric image and predict how it will feel, and vice versa. We also show that a system jointly trained on vision and touch data can outperform a similar system trained only on visual data when tested purely with visual inputs

    Estimating Properties of Solid Particles Inside Container Using Touch Sensing

    Full text link
    Solid particles, such as rice and coffee beans, are commonly stored in containers and are ubiquitous in our daily lives. Understanding those particles' properties could help us make later decisions or perform later manipulation tasks such as pouring. Humans typically interact with the containers to get an understanding of the particles inside them, but it is still a challenge for robots to achieve that. This work utilizes tactile sensing to estimate multiple properties of solid particles enclosed in the container, specifically, content mass, content volume, particle size, and particle shape. We design a sequence of robot actions to interact with the container. Based on physical understanding, we extract static force/torque value from the F/T sensor, vibration-related features and topple-related features from the newly designed high-speed GelSight tactile sensor to estimate those four particle properties. We test our method on 3737 very different daily particles, including powder, rice, beans, tablets, etc. Experiments show that our approach is able to estimate content mass with an error of 1.81.8 g, content volume with an error of 6.16.1 ml, particle size with an error of 1.11.1 mm, and achieves an accuracy of 75.675.6% for particle shape estimation. In addition, our method can generalize to unseen particles with unknown volumes. By estimating these particle properties, our method can help robots to better perceive the granular media and help with different manipulation tasks in daily life and industry.Comment: 8 pages, 14 figure

    More Than a Feeling: Learning to Grasp and Regrasp using Vision and Touch

    Full text link
    For humans, the process of grasping an object relies heavily on rich tactile feedback. Most recent robotic grasping work, however, has been based only on visual input, and thus cannot easily benefit from feedback after initiating contact. In this paper, we investigate how a robot can learn to use tactile information to iteratively and efficiently adjust its grasp. To this end, we propose an end-to-end action-conditional model that learns regrasping policies from raw visuo-tactile data. This model -- a deep, multimodal convolutional network -- predicts the outcome of a candidate grasp adjustment, and then executes a grasp by iteratively selecting the most promising actions. Our approach requires neither calibration of the tactile sensors, nor any analytical modeling of contact forces, thus reducing the engineering effort required to obtain efficient grasping policies. We train our model with data from about 6,450 grasping trials on a two-finger gripper equipped with GelSight high-resolution tactile sensors on each finger. Across extensive experiments, our approach outperforms a variety of baselines at (i) estimating grasp adjustment outcomes, (ii) selecting efficient grasp adjustments for quick grasping, and (iii) reducing the amount of force applied at the fingers, while maintaining competitive performance. Finally, we study the choices made by our model and show that it has successfully acquired useful and interpretable grasping behaviors.Comment: 8 pages. Published on IEEE Robotics and Automation Letters (RAL). Website: https://sites.google.com/view/more-than-a-feelin

    Review Article Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    Get PDF
    With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective

    Shape-independent hardness estimation using deep learning and a GelSight tactile sensor

    Get PDF
    Hardness is among the most important attributes of an object that humans learn about through touch. However, approaches for robots to estimate hardness are limited, due to the lack of information provided by current tactile sensors. In this work, we address these limitations by introducing a novel method for hardness estimation, based on the GelSight tactile sensor, and the method does not require accurate control of contact conditions or the shape of objects. A GelSight has a soft contact interface, and provides high resolution tactile images of contact geometry, as well as contact force and slip conditions. In this paper, we try to use the sensor to measure hardness of objects with multiple shapes, under a loosely controlled contact condition. The contact is made manually or by a robot hand, while the force and trajectory are unknown and uneven. We analyze the data using a deep constitutional (and recurrent) neural network. Experiments show that the neural net model can estimate the hardness of objects with different shapes and hardness ranging from 8 to 87 in Shore 00 scale
    • …
    corecore